Journal of Approximation Theory 117, 1-22 (2002)
doi:10.1006/jath.2002.3681

On Fourier Series of a Discrete Jacobi—Sobolev Inner Product

F. Marcellan'

Departamento de Matematicas, Universidad Carlos III de Madrid, Avda. Universidad 20,
28911 Leganés, Madrid, Spain
E-mail : pacomarc@ing.uc3m.es

B. P. Osilenker

Department of Mathematics, Moscow State Civil Engineering University, Moscow, Russia
E-mail : b_osilenker@mail.ru

and

I. A. Rocha

Departamento de Matematica Aplicada, E.U.LT. Telecomunicacion,
Universidad Politécnica de Madrid, Ctra. de Valencia Km. 7, 28031 Madrid, Spain
E-mail : igalvar@euitt.upm.es

Communicated by Walter van Assche

Received March 2, 2001; Accepted December 31, 2001

Let u be the Jacobi measure supported on the interval [—1, 1] and introduce the
discrete Sobolev-type inner product

o1 K Ni
ooy = [ SO0+ DD Mea g )

k=1 i=0

where a;, 1<k<K, are real numbers such that |a;| > 1 and M;; > 0 for all £, i. This
paper is a continuation of Marcellan et al. (On Fourier series of Jacobi-Sobolev
orthogonal polynomials, J. Inequal. Appl., to appear) and our main purpose is to
study the behaviour of the Fourier series associated with such a Sobolev inner
product. For an appropriate function f, we prove here that the Fourier-Sobolev
series converges to f on (—1, I)Uf:1 {ax}, and the derivatives of the series converge
to f@(a;) for all i and k. Roughly speaking, the term appropriate means here the
same as we need for a function f in order to have convergence for its Fourier series
associated with the standard inner product given by the measure . No additional
conditions are needed. © 2002 Elsevier Science (USA)
MSC: 42C05.
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2 MARCELLAN, OSILENKER, AND ROCHA
1. INTRODUCTION

Let u be a finite positive Borel measure on the interval [—1, 1] such that
supp u is an infinite set and let ay, for k = 1,..., K, be real numbers such that
lax| > 1. For f and ¢ in L?*(u) such that there exist the derivatives in a;, we
can introduce the Sobolev-type inner product

1 K Ni
to= SO )+ 30 > M a0 ()
- =1 =0

where M;;>0 for i=0,...,N; and k=1,...,K. Let (Bk(x)),fio be the
sequence of orthonormal polynomials with respect to this inner product,

(B,B>=0,4, kn=0,1,....

For every function f such that {f, B;) exists for k = 0,1, ..., we introduce
the formal associated Fourier—Sobolev series

Z S BiyBi(x).
=0

In this paper, we continue the work presented in [3] and its main purpose is
to prove the relations

S BB = £, ve(-1,1),
k=0

[o¢]
S BB @) = fOa). 0<i<N. 1<k<K,
k7

under standard sufficient conditions for f when the Jacobi measure, du(x) =
(1 —x)*(1 + )P dx, a>—1, p > —1, is considered. The precise terms of this
result are given in Section 4.

In order to obtain it, we previously need some estimates for the
polynomials B,(x) in [—1, 1] Uk 1ax} as well as for the involved derivatives
B( (ar). These estimates are studied in Section 3 not only for the Jacobi
measure but also for every measure p belonging to the Szegd class. We start
with a representation of B,(x) in terms of the polynomials (gn(x)),~, which
are orthonormal with respect to the measure wy(x) du(x), where wy(x) is a
polynomial with zeros of multiplicity Ny + 1 at the points a; and N =
Zle(Nk + 1) is the degree of wy(x). In Section 2, we prove that

N
Bn(x) - Z An,iqnfi(x)
i=0
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and the sequences (4,,),—o, i =0,...,N, are convergent when the measure u
is such that ¢/ > 0 a.e. One consequence of this result is the strong and ratio
asymptotics for the polynomials B,(x). The relative asymptotics are well
known from papers by Lopez, et al. [2] and Marcellan and Van Assche [5],
where they solved this problem using a different representation of the
polynomials B,(x).

In order to obtain some results, we will use the auxiliary space

S={f:fel*w, fa) exists, i=0,...,Ny, k=1,...,K}

with the inner product (1), where f is assumed to be defined in a
neighbourhood of a; and its derivatives are considered in the ordinary sense.
The space S behaves like a vector space with one component in L?(¢) and a
finite number of real components.

The fact that the points a; are outside the interval [—1, 1] plays an
important role in the whole paper because, in this case, Vl( isa contlnuous
function in that interval. Note that some estimates of the polynomials B
when a mass point at ¢ = 1 is considered, have been obtained in [1]. The
problem of the estimates and the behaviour of the Fourier series when the
mass points a; lie on the interval [—1, 1] remains open.

2. AUXILIARY RESULTS

Let N = Z’,f:l(Nk + 1) and let wy(x) be the polynomial
K
wy () =[] (= a)™*.
k=1

In order to have positivity for wy(x) and also to make the notation
more comfortable, without loss of generality, we will assume that all
points a; belong to the interval (—oo,—1); otherwise, we only have
to change the corresponding factor (x — a;) by (a; — x) in the definition of
wy (x).

Let us consider the polynomials

Nl x — @), .., (e — ap)M !

NMH (e — ay)

{l,x—al,(x—al)z,...,(x—al)
—a)™t = a)M T = @) (= ax)™

and denote them as wy;(x) for k=0,...,N —1. It is clear that they
constitute a basis of the vector space Py_; of the polynomials of degree less
than N. Let wy_z2(x) be such that wi 1 (X)wy_r2(x) = wy(x).
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Let (g4(x)),-, be the sequence of orthonormal polynomials with respect to
the measure wy(x) du(x) and let

N
() =1+ b Ti(x),
k=1

where Tj(x) = cos k0, x = cos 0 are the Tchebichef polynomials of the first
kind, the Nth polynomial orthogonal with respect to }I%‘b‘. We will

wy(x)y/ 1—x2
also denote k(n) the leading coefficient of any polynomial n(x).

LemMmA 2.1. For n=N, there exist constants A,; such that
X N
Bn(x) = Z An,iqnfi(x)a An,N #0.
i=0

If the measure u is such that p'(x)>0 a.e. in [—1, 1], then lim,_ood,; = A,
where

1 bi

) A[: s 1<<N.
V2Vby vV 2Vby l

Ay =

Proof. Since B,(x) = > im0 Anjqn-j(x) and

1
Apj = / B,(x)gn—j)wy(x) du(x) = (B, qu—jwn)> =0, N<j<n,
-1

taking into account that 4,y = <l:?,,,q,,_NwN> #0, the first assertion holds.
On the other hand, from the orthonormality of B,(x), we get

N 1
Z A, = / Bj(x)wN(x) du(x) < max, [wy ()]
=0 -1 e

and, as a consequence, |4,;| are bounded. Moreover,

K(gn-n) _ K(gn-n) 1
Kk(B,) K(qn) Ano
(2

An,O = AmN = <Bn(x), wy(X)gp-n(x)) =

Also from the orthonormality of B,(x), the sequences (l?f:) (a)), for 0<i
<N;, k=1,...,K are bounded.

Let A be a family of non-negative integers such that (4,,),., is convergent
for each i =0,1,...,N and let 4; = limyes 4,;. As it is well known (see
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[6,7]), the condition ' >0 a.. gives ratio asymptotics and the
equalities

hm K(ql’l—N): 1

n=00  K(qn) 2N

1 1
im [ o i = [ orieoE

for any continuous function f(x) also hold. As a consequence, taking into

account that Wlw is a continuous function on [—1, 1],

) 1 . ) N 1 WN()C)

im [ By(0)gn(ower (0) du(e) = lim Y~ Api [ gui0)ga(x)———— dp(x)
neAd [ 4 neA =0 1 WN,k,z(x)

Syl e s
o wy ko) /T — 2

1

:l/l iA-T(x)w (X)L
T R wy(@)V/1 —x2

Since Ay = 3, if we prove that lim, . [, By(x)g,()wi (x) du(x) = 0
for k=0,...,N—1, the statement of the lemma follows because
this means that va: 0 A4iTi(x) is an orthogonal polynomial of degree N with

respect to L—%—and, since 49 > 0 because Ay <00, 1 + Zfi] %Ti(x) =
wy(x)y/ 1—-x2

ITy(x). Let us prove the previous assertion.
Consider the basis of PP

{Lwia(x), waa(x) ..., wy—12(x), Wy 2(x) = wy(x), xwy(x), .. .}.

If we write B,(x) in terms of this basis, we have
. N n—N )
B,(x) = Z 0, iWin(X) + Wi (x) Z Bix's
i=0 =1

where woa(x) = 1. There exists a constant C, independent of n, such that
lotn | <C for i =0,1,...,N — 1, because o, = Bn(aK) which is bounded as
we already know, and if we assume that o,,0,1,...,%,; are proved
bounded, since

Wir12(x) = (@ — Owiplx)  for L€ fay,.. . ax},



6 MARCELLAN, OSILENKER, AND ROCHA

we have one of the following two possibilities:
First, writing wiy12(x) = (x — &)'n(x) for a polynomial n(x) such that
(&) #0, when v is less than the multiplicity of ¢ as a zero of wy(x),

A . (v
B~ Yy aewial) 8O = Sl ani©)
Opir1 = lim .
x¢ Wir12(x) vin(&)

Second, when v is equal to such a multiplicity, denoting &* the consecutive
zero in the construction of the w;(x),

On,i+1 =

Bu(&*) = S1_g tnewia(E¥)
Wi+1,2(§*) ‘

In both cases ¢, is bounded because (Ef,v)(é))zozo and (B,(£%)), also are
bounded sequences.
Now, we get

1
/_ Bu(0)ga 0w () du(x)

1

: N 1 n—N ]
=3 s [ W)+ 3 s [ w0 i)

i=0 1 i=1

1
=Y 4, / Wi Wi (D) dux)
» -1

from the orthogonality of ¢,(x) and because, for N — k<i<N, w;a2(x)wi
(x) = wy(x)m(x), where n(x) is a polynomial of degree less than or equal to £.
Taking limits,

n—0o0 1

1 . N—k—1 1
fim [ B0 00 du) = im S st [ a0k g 0) i)

i=0
T N WzZ(x)Wkl(x)
= Jim / )

X gn(X)wy(x) du(x) = 0,

because (2,,),~, are bounded sequences and |, ! %&;(")qn(x)wjv(x) du(x)

are the Fourier coefficients of the continuous function %’W which tend
to zero. Hence, Lemma 2.1 is proved. 1
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The computation of the coefficients by, k= 1,...,N, is straightforward.
Let us consider the function

"My(x)  dx

1 X—Z ,/1_x2.

From the orthogonality of ITy(x), we have

F(z) :%

1 /! wy(x dx
0 :E/IHN(X)(X ]—V(az)iw,v(x)\/i‘:’{z’ i=1,.. Ne+1, k=1,.. K.
Then,
FD(a;) =0, i=0,....,N,, k=1,... K. (3)
Since F(z) = " bi(9~ (@)Y, where ¢ (2) =z — /22 — | with

the square root taken in such a way that ¢~ (z)|< 1 for z¢ [—1, 1], (3) means
that 1+ Zle bi(¢p~(2))* vanishes at a; with multiplicity N + 1 for k =
1,...,K. As a consequence, taking into account that the function w = ¢~ (z)
is a conformal mapping from C\[-1,1] to |w| <1,

1
Hk1(€0( ))M

and from the relations between 4; and b, given in Lemma 2.1,

1+Z (o™ (2)) = +1H (0" (@) — ¢ (@)™

1 K
. [T 0@ - @™
VT (Co @) i

N
Y Ao @) =
=0

Note that if some points a; belong to (1, 00) in such a way that k(wy) = —1,

in (2) we Would haVe An,N — _Kfcq(n7;Y)Al Wthh giVeS Ai = 2L in Lemma
2.1. Tt yields ) o \/—2Vby

N 1 K
Ao~ @) = (¢~ @) — ¢ (@)™
’; k V2V TI o (@l k[[l k

for the general case.

As a straightforward consequence, one obtains the strong (resp.
ratio) asymptotics for the polynomials B,(x) provided that u belongs
to Szegd (resp. Nevai) class. As it was previously mentioned, these
results were also obtained by Lopez, et al. [2] and Marcellan and Van
Assche [5].



8 MARCELLAN, OSILENKER, AND ROCHA

COROLLARY 2.1. If /(x)>0 a.e. x e [—1,1], then

(i)

fim 2 _ : 1T 09— (@™
=00 g(x) \/2N Hle |(p—(ak)|Nk+1 =1

uniformly on compact sets of C\[—1,1], where ¢~ (x) = x — /x> — 1.
(ii)) n — N zeros of B,(x) are in [—1,1] and, for k =1,...,K, Ny + 1 zeros
tend to ay.

(iii)
lim B,1+1(x) =x+Vx2-1
n=>00 B,(x)

uniformly on compact sets of C\([—1,1] Ule {ar}).
(iv) If [, log ' (x)—e > — 00, then

£/ 1—x2

. B,(x) 1 L NNt
lim = (@ (x) — ¢ (@)™ S(x)
TR VE DT TIE e ™ 1 k

uniformly on compact sets of C\[-1,1], where S(x) is the Szegi
Sfunction of wy(x)u'(x) (see [9, Theorem 12.1.2] as well as the definition in
p. 276).

Item (ii) is a consequence of the fact that fil B, (x)wy(x)x* du(x) is equal

tozerofork =0,1,...,n — N — 1 as well as from the asymptotic formula ().
If we write the polynomials wy(x)B,(x) in terms of B;(x)for j =0,...,n +

N, taking into account that

1
vy (0)B,(x), Bj(x)) = (B,(x), wy(x)B,(x)) = [ 1 B,(x)B(x)w () dp(),

which, in turn, is zero for j=0,...,n— N — 1, we have wN(x)En(x) =
Z]]V: N oc,,,jfi’nﬂ(x) and, consequently, they satisfy a 2N+41
recurrence relation. Since On—j = 0n—jj, the recurrence relation can be
written as

N N
Wy (B (x) = > o iBuj6) + D o B ().
j=0 j=1
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Besides, for 0<j<N,

1

Ofn,j = /_ 1 B, () B, /(x)wy (x) dpu(x)
N N 1

- Z Anid "+/k/1qn*i(x)anLjfk(x)WN(x)d,u(x),
k=0 -

i=0

and, if ¢/(x) >0 a.e., Lemma 2.1 gives

N N 1 /! dx
fim o =3 > Aidi / Ty == -
=0 k=0 -1 I —x

COROLLARY 2.2. There are constants o,y such that
N N
wy()B,(x) =Y g Bis) + Yt ix By i),
k=0 k=1

Moreover, if (f'(x) > 0 a.e., there exist real numbers oy such that lim, o0, =
o fork=0,...,N

In the case of only one point a; and N, = 1, explicit values of oy are given
in [3] and, in the general case, the values o; can be seen in [2, 5]. For our
purpose in this paper, we only need to know that the sequences (a,x),-, are
convergent. From Lemma 2.1, it is possible to obtain the weak asymptotic
formula

1 PO 1 /! dx
lim / FOBA) By () dpx) = 1 / ST
n—oo J_; T 1

—x2

for any continuous function f(x). This formula was proved in [2, 5].

In order to study the behaviour of the Fourier—Sobolev series, we need
one more result. Let us consider the already defined space S and let @ be the
family of polynomials

6= {WN(x) wy(x) wy(x) wy(x)
X = Cl]’.. .’(x— a])NIJrl’(X* az)’. ) .’(x_ aK)NK+l’

wy (), xwy (x), . . }

LEMMA 2.2. S is a Hilbert space and the family of polynomials @ is
maximal in S.

Proof. Since I/l = <f0), £ = ILFWI + 3 o Ml f©

(ax)]>, a Cauchy sequence in S, ( Sieos 18 @ Cauchy sequence in L2(,u) and
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the same happens for the sequences (f?(a;));", in R. Then, any function f,
defined in a neighbourhood of @ such that fP(a;) = lim,_~ f?(a;) and
that in [—1, 1] is the L*(u) limit of f;, is a limit of f, in S. Therefore, S is a
Hilbert space.

On the other hand, if { f(x),xwy(x)> =0for k=0,1,..., then

1
/ Fx wy(x) du(x) = 0, k=0,1,...
—1

and thus wy(x)f(x) =0 p-a.e. But wy(x)>0 for xe[-—1,1], hence

() =0 pae. In this case, <f(x),g(0)> =S5 S MiifP(a)g®(a)
and, from < f(x), 2285 — (, fNtl=d(g)y=0fori=1,...,Ny+ 1 and k =

(r—ay)' . .
I,...,K. As a cor){seaéluence, f=0in S and the lemma is proved. 1

3. ESTIMATES FOR SOBOLEV POLYNOMIALS

In order to obtain estimates for B,(x) when x € [—1, 1], the measure y is
considered to be in the Nevai class.

LEMMA 3.1. Let u be a measure such that p/(x) >0 a.e. xe[—1,1]. Let
(pa(x)), be the sequence of orthonormal polynomials with respect to u. Let
aeR\[-1,1] and let (t,(x))}>, be the sequence of orthonormal polynomials
with respect to |x — a| du(x). There exists a positive constant C such that

b — alltu()l < C(| pas1 ()] + [ pa(x)])

for every x and for all n.

Proof. For the polynomials #,(x) we have 7,(x) = Z;:o JnjDj(x), where

1 1
Ty = / 19p0) o) = pfa) / e

1 i ,® 1
+ / O —a) Y ”-’k—!(“)m — @) du(s) = pila) / ) du(s).

k=1

Hence,
1 n
00 = [ 46 p@pw
1 =0

/ 6y ey 2P OP) — pui(@ pi)
-1 ! /K(pnﬂ) xX—a ’
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and, as a consequence,

<(pn)
( D1 )

I, ()| <

‘ / @) )

(|pn+1( j 4 P @ )|>

al | u(@)]

But =) and p”“fz‘)’) are bounded because these polynomials have ratio

K(PnJrl) yZ (
1
< < / 2(s) du(S)|>
-1

asymptotics. Thus,

1/2

1
‘ / 1)) dits)

1
= ‘ [ 1 12(8) pu(s) dpi(s)
1
<——.
dist(a,[—1,1])

Then, |x — alt,(x)]| < C(| pur1(x)] + | pa(x)]) for every x and for some constant
C. 1

By iteration of this lemma, for the polynomials (g,(x)),-,, orthonormal
with respect to wy(x) du(x), we get

COROLLARY 3.1.  If (/(x) > 0 a.e. and p,(x) are orthonormal with respect

to u, there exists a positive constant C such that

W (Olgn () < C( puin (] + - - + [ Pa(X)])

for every x and for all n.

For the Sobolev orthonormal polynomials (B, (x)),2, this inequality and
Lemma 2.1 give

COROLLARY 3.2. If (/(x) >0 a.e. and p,(x) are orthonormal with respect
to u, there exists a positive constant C such that

wx B (< C| pan )] + -+ + [ pun (X))

for every x and for all n.

COROLLARY 3.3. [If i/(x) > 0 a.e. and there is a function h(x) such that the
polynomials p,(x), orthonormal with respect to u, satisfy the condition | p,(x)
|<h(x), x e[—1,1], then there exists a constant C such that

|B,(x)| < Ch(x)

for x € [—1,1] and for all n.

It is clear that the constants C in the previous corollaries may be different
despite the fact that we use the same symbol.
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The last corollary will be very useful for the study of Fourier—Sobolev
series when u is the Jacobi measure because in this case the function A(x) is
very well known.

In order to study the Fourier series, we also need estimates of B( (ap), j=
0,...,N; and £k=1,...,K. This problem will be considered now. The
condition wWx)>0 ae. is not sufficient for our purposes in what follows.
Thus from now on, we will consider the measure p in the Szegd class, i.e.

I logu(x)\/d—"—> —00.

LemMmA 3.2.  Let u be a measure in the Szego class and let q,(x) be the
orthonormal polynomials with respect to wy(x) du(x). There is a constant C
<c— "

such that
‘/ qn(x ) —
lax + \/ag — 11"

fori=1,...,Ny+ 1, k=1,...,K and n large enough.

i—1

d p(x)

Proof. We proceed by induction. By orthogonality,

/_ nlx )WN(XZ () wy(x)

1
s | (a0 2 dyo)

1
—— | i)

N()

+ (x —ap)m,— 1(x)} d wux)

for any polynomial n,_;(x) of degree less than n. Then,

‘/ n(>N()d()] / 2()N()d(>'

an( )l lgn(a k)l'

Suppose

jfl

‘ / WN( ) du)| <

Yigutan) |gn(ar)l
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for some constant C; and for 1<;<i<N;. Then,

/ e N())M ux)

) wy(x
(a>/ q"(x){q"(“k”zq” e a»"}ﬁd#@

V=

1 ! () ,
- q (ak)/l 4x) Z o v('ak)(x C )l( = ))’+l du(x)
" - y=1 .

> WN( ) qf,‘)(ak)
/ ( ) l+1 ( q;z(ak) Z

qn(ak)
WN(X)

() —————— du(x).

x/lq(x)( st

By induction,

WN( ) lgW(ar)| Cip1-yn'™"
‘/ gy ‘ PRER] Z|

V'Qn(ak)| |qn(ak)| ’

. .. ")
but, since pu belongs to the Szegé class, %< C*n’, and

wy(x) O N Gy G
’ / O gy )’ gn(ap)] |qn(ak)|; o Sl

for some constant C;;; and n large enough. 1

COROLLARY 3.4. If u belongs to the Szego class, there is a constant C such
that

i) N
|B, (ap)| < C

lax + \/a? —1|"

fori=0,...,Ny, k=1,...,K and n large enough.

Proof. We use induction again. Since

0= (B0 )
ANK)

=/ B’ N()du()+Mka S

WNlle)(a )
Ny+1 7

(a)——7
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we get

~(Ni) Ny +1
(gl = — el
Mien wy* " (ar)l

/ B0 dy)|.

Hence, Lemmas 2.1 and 3.2 give f?nNk (ap) = O(ﬁ).
ag++/ a;— &

|B,

We assume B(" Na )70(L) for 0<j<i<N;. Then, we

have a1
wy(x) > wy(x)

B, —25 N~ [ B —2 g

< 0, / 109 S dut

+Mkl+1B(l+l)( )(l_|_])lWNk+1')(a)+0 V= (+2) ,

(N +1)! (@ + /g — 1)"

whence

B0 —(Ny + 1) B wy(x)

= B,(xX)——5—d
B e = / B dut)

Ni—(i+2)
(ar + y/aj — 1)

But, from Lemmas 2.1 and 3.2,
1 . w () Ni—(i+1)
/ B ) =

(ak +\/ag — 1)

Then 87"

Vk (i+1)

(ax) = O(ﬁ

). This completes the proof. 1

4. FOURIER SERIES

In Lemma 2.2 we proved that, with the inner product (1),

1
:{f(x) :L | f ()] du(x) < oo, fD(ay) exists fori=0,...,Ni, k=1,....K
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is a Hilbert space and the polynomials constitute a maximal family. Then,
S,(f) — fin S for any function f € S, where

i ) =Y <+ BiyBi()
k=0

is the nth partlal sum of the Fourier—Sobolev series of f. Write ||f||§ =
||f||2 + ||f||d Convergence in S induces convergence in Lz(,u) as well as
convergence for the derivatives at the points a; because || f ||ﬂ<|| f ||5 and
||f||d<||f||§ So, for any function f in S, we have

$,0: 'Y £, SNag: f) > fPar), 0<i<Ni, k=1....K.

For i=0,...,N; and k=1,...,K, let us consider the functions f;; such
that fi,(x) = 0 xe[-1,1], f,” (at) =1lwhent=k j= z and 0 otherwise.
Since S,(fri) converges to fi; in S and {fi,, ,,> Mk,B (ak) we get

o ; R ) 00 N7 N
> BlaB,o 0, Y Bl@B@)=0. £k or j#i
n=0 n=0

; B (@) = i

Let u be the Jacobi measure, du(x) = (1 — x)*(1 + x) dx, o> —1, > —1,
and let p,(x) = p*P(x) the corresponding orthonormal polynomlals (from
now on, the orthonormal Jacobi-Sobolev polynomials). As it is well known
(see [8, Theorem 3.14, p. 101]) that

(1= AA 4 02 p,l<C, xe[-1,1].

Let B,(x) = (U/)(x) be the orthonormal polynomials with respect to the
inner product (1) when p is the Jacobi measure. Corollary 3.3 yields the

uniform bound

C
| — xR 4 )P

|B,(x)| <( =h(x), xe(=11). “4)

(D)

From inequality (4) and Corollary 3.4, the series > - B, (a0)B,(x), 0<i

<N, has the majorant > ° ) Cn™(a; — /a? — 1)" in compact sets of
(=1,1) for some constant C. Then, the series is a continuous function in
(—1,1). But we have convergence to 0 in L*(u) for the series. Hence, it has a
subsequence which converges pointwise to 0 a.e. As a consequence, » -,
B (ax)B,(x) = 0 for all x € (—1,1). We summarize the above as follows.
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THEOREM 4.1.  Let B,(x) be the orthonormal Jacobi-Sobolev polynomials.
Then,

i >0 B’S)(ak)]?n(x) =0 for every xe (—1,1), i=0,...,N; and k =
L...K, ‘

(i) S0 B (@) BV (@) = 0 for t+£k or j#i.

(i) S0 (B (@) = g for i = 0,..., Ny and k = 1,....K.

n

From now on, we will study the pointwise convergence of S,(f) to f on
the interval [—1,1] when there are standard sufficient conditions for the
function f. First of all, we need the analogous of the Christoffel-Darboux
formula for the Sobolev polynomials but, if xy € [—1, 1], the polynomial
wy(x) — wy(xp) can have two zeros in the interval [—1, 1] when there are
points a; in (—oo, —1) and in (1, 0o) simultaneously. Then, this polynomial is
not convenient for representing the Dirichlet kernel. Instead of wy(x), we
will consider a different polynomial which also allows a Christoffel-
Darboux-type formula and which has better properties. Let wy,(x) =
fg wy()dt and let ¢ =min{wy,  (x):xe[-1,1]}. Let wyyi(x) be the
polynomial wy, (x) + ||+ 1. It is clear that wy,(x) does not have zeros
in [—1,1] and, when xo € [—1, 1], wy11(x) — wn1(x0) has the only zero x¢ in
[—1,1] because its derivative wy(x) does not vanish at this interval. The
important facts are that Wvu(x);:% is a continuous function in [—1, 1] and
that we can obtain an expression for the Dirichlet kernel in terms of wy | (x).
Since the derivatives of wy(x) are equal to zero at the points ay,

W 1(0) f (), 9(x)) = {f (), wy1(x)g(x)),

and, as a consequence, we have the following recurrence relations for the
polynomials B, (x),

N+1 N+1
WN+l(x)Bn(x) = Z (xn,anJrk(x) + Z anfk,anfk(x)- (5)
k=0 k=1

Moreover, the coefficients o, are bounded because
|0kl = [KWN-+1Bns Buii )|

1
< ‘ / BBy () )

K
+ 37 Myowns1(@)|Bu(a)Busala)]
i=1

and the first term is bounded by max,e—1,1j/wn+1(x)| and the other one is also
bounded from Corollary 3.4.
The Christoffel-Darboux formula takes now the following form (see [4]).
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LEMMA 4.1.  Orthonormal polynomials with respect to the inner product

(1) satisfy the following Christoffel-Darboux-type formula:

W1 (x) = wy ()} Z B,()B,(y) = 0,1(By11(0)B(y) — B,11(3)B(x))

+ o 2(Bv+2(x)B (y) v+2(y)B (x)) + oy 12(Bv+l(x)Bv l(y)
- Bwl(}’)B» 1(X)) + -+ oy N+1(B\+N+I(X)B ) - 1+N+1(y)B (x))
+ o+ oy (B (0B n(») — Bui1(3)By-v ().

Furthermore, if the measure belongs to the Szegé class, the coefficients are
bounded.

Proof. As usual, from (5) we have
N+l N+l

WN+1(x)Bn(x)Bn(y) = Z (xn,annLk(x)Bn(y) + Z O‘nfk,kl}nfk(x)l}n(y)y
k=0 —

N+1 N+1
WN+1()’)Bn(y)Bn(x) = Z a;z,an+k(y)Bn(x) + Z O(n—k,an—k()})Bn(x)~

Then

v1(x) = w1 ()} Ba(0) Bo(7)
1

= Z Otnk(Bn+k(x)B (y) n+k(y)B (x))

k=N+1
N+1

- Z anfk,k(Bn(x)ank(y) - Bn(y)ank(x))-
k=1

Writing F¥(x, y) = o(By+4(x)B,(») — B,1x(»)B,(x)) and taking into account
that F¥(x, y) = 0 for negative integer values of n, we get

Doy () = wy 1 ()} Y Bu@)B,()
n=0
= Y AFE® ) — B ) + (Frxp) — B ) + -+ (B, p)
n=0

— B @)

= F, )+ FX, ) + FL (6 ») + FX(x, p) + F (o, p) + B, p) + -+
+ FN T y) + o+ FY N, )
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= 0,1 (Bi1(0)By(») — Bi1(1)By(%)) + . 2(Bri2(0)By(») — Bria(3)By(x))
+ oty 12Bu1 (0B, 1(») — Bt (0B (0) + -
+ o N+1(B\+N+1(X)B () = Biini1 (0B, (x)) + -
+ oy w1 (Bu1 (0B, n () = By1 (3)Biy ().

THEOREM 4.2. Let xo € (—1,1) and let f be a function with derivatives at
the points ay such that W belongs to L*(u) where u is the Jacobi measure.
Then,

(@) S o< f BudBu(xo) = f(xo).
() S0 BB @) = fD@), i=0,... N, k=1,....K

Proof. Since f e L*(u) provided that [&0=/() (XO) 1O e 12(n), (ii) is proved.
Thus, we only need to prove (i). Let us denote D,,(x, t) = Z;l:o l}j(x)lg’j(t). We

have
F0) — Suxos ) = fx0) — £(0), Do 1
1
- / (f(0) — F(O)Du(xo, 1) du(t)

T Z Mio(f(x0) = /@)Dy, )

N
Z Mkl

k=1 i=1

K

a).

But Theorem 4.1 yields lim,_,D,(xo,ar) = limnqw%(xg,ak) =0 for i=
1,....N, k=1,...,K. Then,

1
Jim (£o0) = 8,020 = lim [ (70) = SOy 30,00 Ao

From the Christoffel-Darboux formula (Lemma 4.1), D,(xo,?) is a sum of a
finite number of terms—depending on N—of the following type:

Bn—i+j(x0)én—i(t)
On—ij

0<i<N, I<j<N+1.
oy 1(¥0) — Wy 1(0) /
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Taking into account that

aniJrj(xO)ani(t)
Wwy1(x0) — wy1(2)

1
' /_ 1(f(XO) — ()i du(?)

B,_i(t) du(t)

/lf(xo)f(t) X0 — 1t
~1

xo—t  wyy1(xo) — wyy1(?)

= |oty—i jl[Bu—itj(x0)|

as well as |B,,,i+j(xo)|<h(x0) from (4), and that o,_;; are bounded from

Lemma 4.1 since Sxo)—f(®) xXo—t
o Yot Wyr1(o)—who1()

is a continuous function at [—1,1] and, by hypothesis,

belongs to L*(u) because

Xo—t
Wi +1(xX0) —wn1(2)

SG)—f() 2 ;
# belongs to L-(u), Lemma 2.1 gives

hm On—i,j B, z+1(x0)/ f( f(t) o

n—00 xo—t  wyy1(xo) — wyy1(?)

Bu-i()

wi(2)

v ()

Hence, lim,,— (f(x0) — Su(x0; )) = 0 and the proof is complete. 1

du(t) = 0.

THEOREM 4.3. Let f(x) be a function with derivatives at the points ay
satisfying a Lipschitz condition of order n<1 uniformly in [—1,1], i.e. |f(x+
h) — f()| <MW" for |h| <0 and for some 6 > 0. If ¢, = {f, B,), then

o0

ch f(x) xe(_lsl)a

n=0

and the convergence zs unzform in[—1+e1—¢g] for every & such that 0 <e<l.
Moreover, >0 an (ak) = fOay) fori=0,....Nyandk=1,...,K

Proof. In the same way as before, we only need to prove that fil 1@
D, (x,t) du(t) converges to f(x) for x € (—1, 1). Besides,

1
‘ / @) = SO, dute)

<

X

/||>5(f(x) — F(O))D(x, 1) du(r)| +

= 1) + 1P ).

|0 oo o

Since % (1= Zie-5.000)(1)), Where y_5.,5)(2) is the characteristic

function of the interval, belongs to LZ(,u) using Christoffel-Darboux
formula and the same procedure as in the previous Theorem, the term
I\V(x) tends to zero.
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On the other hand, /®(x) is a sum of a finite number of terms

VS PAY) x—t

B,_i(t) du(b),
hef<s  X—1  wyni1(x) —wy (D) g

anfi,jénflﬁrj(x)

where the coefficients o,,_;, jBn,H () are uniformly bounded in closed subsets
of (—1,1) from Lemma 4.1 and (4). Furthermore, when x belongs to (—1, 1),
the Lipschitz condition gives

/ J&) - /() x—t
x—t]<d

Yt @ @0 a0

ccf o

i< e — o'

where the constant C depends on max{m :te[-1,1]}, on the

constant of the Lipschitz condition and on A(x), where A(x) is the function
such that |B,(x)|<A(x) on the interval (—1, 1). Hence, since u is the Jacobi
measure, for ¢>0 there exists 6 >0 such that [I?|<e¢ and the pointwise
convergence is proved. The uniform convergence in a compact subset F' of
SW—f()
W1 (M) =wn+1 (1)
when (y,?) belong to {(y,7) : |y — t|\2, [t —x|=0, x,ye F} forafixedxe F
and for a fixed J such that f )_<¢, and of the compactness of F. I

du(t
pe—t] <O [x—gI "

(—=1,1) is an easy consequence of the uniform continuity of

As usual, denote
w(0) = w(d, f) = sup{|f(x1) — f(x)I: x1, 2 €[=1, 1], [x1 —x2] <3},

the modulus of continuity of a function f(x) in [—1, 1].

THEOREM 4.4. Let f(x) be a function such that its modulus of continuity
w(0) satisfies the condition
51
w(d) = 0<log(l+”) 5)

for & > 0 with derivatives at the points ay. If G = = (f,B,>, then > cnBy(x)
= f(x) a.e. in [ 1,1]. Moreover, >~ Oan (ap) = fO(ay) fori=1,...,N;
and k= 1,.

Proof. Note that Y, an:)(ak) = f®(a;) holds because f(x) belongs
to S and the only thing to prove is the a.e. convergence in [—1, 1].

We consider again the polynomial wy(x) and the orthonormal poly-
nomials g, (x) with respect to wy(x) du(x). Since wy(x) has no zeros in [—1, 1],
the modulus of continuity of f @ satisfies the condition w(d, wf (X)Z)) =
0(log_(1+8) 1) W

Letd, = f f(x)gn(x) du(x) be the Fourier coefficients of S i terms of

wy (x)

v (X)

¢n»(x). By Jackson’s Approximation Theorem (see [8, Chapt. I]), there is a
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polynomial 7,(x) such that | V{\(& — ()| = (log ) Hence,
o0 1 2
1
dz/(f(x)nnx>w xde(). 6
; e= ] g~ ™ @) wv dut) oa™T 7 (6)

From Lemma 2.1,

= <f Bn> ZAnzdn it Z ZMkjf(])(ak)B (ak)

k=1 j=0

From the bounds of Corollary 3.4 and taking into account the Cauchy—
Schwarz inequality, i.e. | S20° ddy | <(352, d)*(S5, d2 )2, Eq. (6)
gives

2 1
ZCiZO(T)'
10g+ E

k=n

As a consequence (see [8, Theorem 3.3, p. 137]), >o02p ¢ 2log n<oo and
thus (see [8, Theorem 2.5, p. 126]), >~ B, (x) converges ae.xe[—1,1]to
some function g(x) (taking into account that || f || <||f ||§ forany f' e S) But
f(x) belongs to S by continuity, so convergence in S of >~} _, cxBi(x) to f(x)

gives g(x) = f(x) a.e. 1
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